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Abstract: PurpleAir particulate matter (PM) sensors are increasingly used in the United States and
other countries for real-time air quality information, particularly during wildfire smoke episodes.
Uncorrected PurpleAir data can be biased and may exhibit a nonlinear response at extreme smoke
concentrations (>300 µg/m3). This bias and nonlinearity result in a disagreement with the traditional
ambient monitoring network, leading to the public’s confusion during smoke episodes. These sensors
must be evaluated during smoke-impacted times and then corrected for bias, to ensure that accurate
data are reported. The nearby public PurpleAir sensor and monitor pairs were identified during
the summer of 2020 and were used to supplement the data from collocated pairs to develop an
extended U.S.-wide correction for high concentrations. We evaluated several correction schemes to
identify an optimal correction, using the previously developed U.S.-wide correction, up to 300 µg/m3,
transitioning to a quadradic fit above 400 µg/m3. The correction reduces the bias at each air quality
index (AQI) breakpoint; most ambient collocations that were studied met the Environmental Protection
Agency’s (EPA) performance targets (twelve of the thirteen ambient sensors met the EPA’s targets)
and some smoke-impacted sites (5 out of 15 met the EPA’s performance targets in terms of the 1-h
averages). This correction can also be used to improve the comparability of PurpleAir sensor data with
regulatory-grade monitors when they are collectively analyzed or shown together on public information
websites; the methods developed in this paper can also be used to correct future air-sensor types. The
PurpleAir network is already filling in spatial and temporal gaps in the regulatory monitoring network
and providing valuable air-quality information during smoke episodes.

Keywords: air sensor; PurpleAir; PM2.5; air quality index (AQI); correction; evaluation; wildfire smoke

1. Introduction

Wildfires are one of the largest sources of the fine particulate matter (particles of
2.5 µm and smaller, PM2.5) that is found in the atmosphere, contributing over 30% to
the ambient PM2.5 concentrations across the U.S. [1] and severely degrading air quality
in areas downwind from wildfire-prone regions [2]. The number of fires, the burned
areas, and the duration of the fire season are increasing [3], leading to severe smoke
impacts on air quality, as observed in California in 2020 [4,5]. Moreover, there was a
reversal of long-term downward PM2.5 trends in the western United States, due to wildfire
smoke [6]. Exposure to wildfire smoke has been linked to increased all-cause mortality
and respiratory morbidity, with the very young, elderly, and individuals with respiratory
disease being especially susceptible [7]. There are clear increases in adverse health outcomes
being routinely observed, with increasing daily averaged PM2.5 concentrations of up to
200 µg/m3 [8]. However, smoke concentrations can be far higher, with some communities
experiencing concentrations of above 800 µg/m3 for multiple hours over multiple days [9].
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Additionally, wildland firefighters routinely work in areas with extremely high smoke
concentrations, experiencing shift-average PM4 (particulate matter with a median diameter
of 4 µm) concentrations of approximately 500 µg/m3 over an entire fire season [10].

In the United States, public health guidance to mitigate the impacts of smoke is
based on the air quality index (AQI). The AQI is calculated from 24-h averages of PM2.5
concentrations, corresponding to the evidence for PM2.5 health impacts [11]. However,
during wildfire smoke events, PM2.5 concentrations can change rapidly, depending on
the meteorology, the dynamics of the fire, and the local topography. Large increases or
decreases in PM2.5 concentration can be observed as the winds shift over the course of a
day, setting up diurnal patterns of widely varying smoke concentrations. In the United
States, the NowCast AQI was developed to address these dynamic conditions and is a
weighted rolling average of hourly PM2.5 concentrations [12].

In addition to public health guidance, air quality data are used for the occupational
exposure of outdoor workers in California, Washington, and Oregon. Many of these
regulations are at PM2.5 AQI levels in the moderate to unhealthy for sensitive groups range
(AQI = 69–201, PM2.5 concentration = 20.5–150.5 µg/m3). At these levels, the regulations
require exposure controls (e.g., workers must move indoors or into vehicles with filtered
air, move to an alternate location, or wear the respirators provided) [13–15]. In addition, the
California Department of Industrial Relations (commonly known as Cal/OSHA) requires
that once the PM2.5 AQI exceeds 500 (500 µg/m3), the employer must provide and must
expect employees to wear respirators [13]. Given these occupational thresholds for risk-
reduction action, it is important to have accurate measurements up to 500 µg/m3 to support
occupational health decisions.

Large spatial gradients in PM2.5 values can occur due to the localized smoke plumes
and complex topography in the mountainous environment wherein many fires occur [2].
Therefore, the nearest regulatory or temporary monitoring site—sometimes 50–100 miles
away—may not accurately represent the local smoke concentrations. Lower-cost air sensors
can be used to fill in some of these gaps.

In order for air-sensor data to be actionable, sensors must be evaluated and, in some
cases, corrected to provide accurate data over a wide range of concentrations and environ-
mental conditions [16–18]. To evaluate and improve the performance of PM2.5 air sensors,
they are typically run alongside conventional PM2.5 air monitors, in order to compare the
reported concentrations [17,19,20]. It is important to evaluate the range of pollutant and
environmental conditions that the sensors will be used to monitor as performance can
be variable over different concentration ranges and can be influenced by environmental
conditions, including relative humidity (RH) and temperature [21]. Sensor evaluations
compared against air monitors are critical to gain actionable PM2.5 data.

Over the past 5 years, the PurpleAir map has been increasingly used by the public,
news media, and even some air quality agencies to fill in gaps in the monitoring network.
Previous work has shown that PurpleAir PM2.5 is highly correlated with the reference
instruments, but it often reports higher values, in some cases by a factor of two, when
compared to the reference measurements [17,22–28]. The PurpleAir response has shown
some dependence on particle composition or size, with varying corrections needed for dust
and light-absorbing aerosols [25,26,29]. However, a single correction factor has been shown
to provide accurate PM2.5 data (RMSE = 3 µg/m3) across the United States, under a variety
of aerosol types and environmental conditions [17]. The PurpleAir sensor exhibits a linear
response to wildfire smoke at concentrations as high as 200 µg/m3 [23,30]. Laboratory
studies at higher concentrations of simulated smoke and other types of PM have shown
that at elevated PM2.5 concentrations, the PurpleAir has a quadratic or polynomial response
up to 10 mg/m3 [24]. This nonlinearity may be due to a variety of reasons, including sensor
design and data-processing algorithms [21]. To our knowledge, there have yet to be any
evaluations of PurpleAir sensors that account for nonlinearity above 200 µg/m3 for wildfire
smoke in the field.
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With an appropriate correction, the PurpleAir sensor has the potential to provide
accurate PM2.5 concentrations and greatly expand our knowledge of the air quality impacts
of wildfire smoke. In August 2020, publicly available PurpleAir sensor data, with correction
and quality checks, were displayed as a pilot effort, shown on the United States Environ-
mental Protection Agency’s (U.S. EPA) AirNow fire and smoke map (fire.airnow.gov).
These sensors supplemented the relatively few PM2.5 monitors in the western United States,
where most U.S. wildfires occur. As of January 2022, more than 12,000 PurpleAir sensors
are shown on the fire and smoke map. Extreme smoke episodes over many parts of the
western United States since 2020 have highlighted the need for more accurate PurpleAir
data for very high concentrations of smoke (>200 µg/m3).

This study describes the development and evaluation of an extension to the U.S.-wide
PurpleAir correction for high concentrations due to wildfire. We used the collocated and
nearby sensor monitor pairs throughout the country during both typical ambient and
smoke-impacted conditions to develop a correction between the PurpleAir-estimated PM2.5
and the monitor PM2.5.

2. Materials and Methods
2.1. PurpleAir Sensors

The PurpleAir PA-II sensor is a lower-price (USD 230–260) PM sensor that is widely
used globally, with many thousands of publicly reporting sensors. These sensors are
purchased and deployed by individuals, community groups, government agencies, and
others to better understand local air quality. The PurpleAir consists of two Plantower
PMS5003 laser-scattering particle sensors, reporting PM1, PM2.5, PM10, and particle counts
in 6 bins from 0.3 to 10 µm. The two Plantower sensors within the device (channels A and B)
sample at alternating 10-s intervals and provide 2-min-averaged data (80-s averaged data
prior to 30 May 2019); this provides a redundant measurement of PM that can be used for
quality control. The sensors also include a BOSCH BME280 sensor reporting temperature
and relative humidity (RH). This temperature and RH sensor is positioned above the PM
sensors inside the PVC cap, resulting in measurements that are strongly correlated with
ambient temperature and RH but are somewhat warmer (2.7 to 5.3 ◦C) and dryer (9.7%
to 24.3%) than ambient conditions [23,31,32]. A Wi-Fi-enabled chip allows the data to be
uploaded to the cloud in near-real time. PurpleAir also makes a PA-II-SD model that saves
the data to an SD card for applications where Wi-Fi is not available or for users who prefer
to have a backup copy of the data in case the Wi-Fi drops out.

For this project, the 2-min or 80-s averaged data were downloaded for online sensors
from the ThingSpeak API, using Microsoft PowerShell. These data were saved as .csv files
that were then processed and analyzed in R [33] and Python. The offline sensor data were
manually downloaded from the SD cards. The 2-min or 80-s data were averaged up to
hourly data (where data that were collected between 08:00 and 08:59 became the 08:00
average). Hourly averages were excluded that did not contain at least 75% of the expected
points (i.e., 33 points for 80-s averaged data, 22 points for 2-min averaged data) [34]. The
24-h averages were then computed from the 1-h averages from midnight to midnight.
Those 24-h averages that were less than 75% complete (i.e., 18 h) were excluded.

The PM data reported by PurpleAir, at the time of publication, are identical to the
Plantower PMS5003 output and are reported with two different labels. The [cf = 1] data are
identical to the [cf = atm] data below roughly 25 µg/m3, as reported by the sensor, and then,
the [cf = 1] transitions from 25–100 µg/m3 to reporting 50% higher values at concentrations
above 100 µg/m3, compared to the [cf = atm] channel [17]. Some previous correction
methods correct the [cf = 1] data [17,22,28,35], while others correct the [cf = atm] data [25].
These labels were switched (i.e., the [cf = atm] label on the higher data column, now labeled
[cf = 1]) by PurpleAir until late 2019, leading to some confusion and discrepancies in the
older literature [31]. We used the [cf = 1] data in this paper since we, and others, have
previously shown that it is more strongly correlated to reference monitors over the full
range of concentrations [17,28].
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A quality control procedure was applied to the hourly data to remove potentially
spurious readings. The hourly data were considered valid if the difference between the
A and B channel PurpleAir PM2.5 values were within 5 µg/m3, or the relative percentage
difference was less than 70%, resulting in 2.7% of the hourly averages being removed. The
percentage criterion was relaxed from the 62% thresholds used in previous analyses of 24-h
averaged data [17], due to the sensor having higher noise levels at hourly averages.

2.2. Monitors

For this project, twenty-five sensors collocated or near-collocated with the moni-
tors were identified across the U.S. These sites span eight or nine continental U.S. cli-
mate regions [36,37], with most of the smoke-impacted sites being located in the west
and northwest.

2.2.1. Collocated Monitoring in Typical Ambient Conditions

Many ambient sensors were part of the U.S. EPA’s long-term performance project
(LTPP); PurpleAir sensors were collocated at the regulatory monitoring sites in: Research
Triangle Park, NC; Wilmington, DE; Decatur, GA; Edmond, OK; Denver, CO; Phoenix, AZ;
Missoula, MT; and Sarasota, FL, beginning around July 2019. Additionally, a few collocated
sensors operated by local air-monitoring agencies in Appleton, WI, Atascadero, CA, Cedar
Rapids, IA, Marysville, WA, and Topeka, KS were used (Table 1). These sites represent a
variety of climates and experience variations in particle concentration, composition, and
size. These data are representative of typical ambient conditions, as observed across much
of the United States.

Table 1. Ambient summary of the hourly averaged typical ambient dataset locations, comparison
monitor types, date ranges, and the number of data points (N). T640 and T640x data over 35 µg/m3

are excluded from this table and the analysis in the paper. All ambient sensors were collocated by the
EPA or a partner.

Location Monitor Type Date Range N

Appleton, WI BAM-1020 01/01/2019–24/01/2019 574
T640 25/01/2019–09/01/2020 8171

Atascadero, CA BAM-1020 01/01/2018–24/10/2019 15,108

Cedar Rapids, IA BAM-1020 05/05/2018–08/10/2020 27,456
T640 04/09/2019–06/08/2020 232

Decatur, GA T640x 01/08/2019–31/08/2020 6868
Denver, CO T640 14/08/2019–30/09/2020 8828

Edmond, OK
T640 02/08/2019–31/12/2019 3130
T640x 03/01/2020–30/09/2020 5044

Marysville, WA BAM1020 01/01/2019–31/08/2020 8900
1405-F 25/10/2018–31/12/2018 1616

Missoula, MT * BAM-1020 22/11/2019–28/07/2020 1738
Phoenix, AZ TEOM 28/10/2019–31/07/2020 3652
RTP, NC * T640x 01/08/2019–19/11/2019 1921
Sarasota, FL T640 30/05/2019–30/06/2020 9145
Topeka, KS T640 12/03/2019–30/06/2020 8288
Wilmington, DE T640 27/07/2019–30/06/2020 5705

All Ambient 13 sensors *** 01/01/2018–08/10/2020 116,376

All Smoke and Ambient sites ** 27 sensors 01/01/2018–20/10/2020 134,458

* A different sensor from that deployed during the smoke impact tests. ** Includes all the ambient sensors listed
in this table and all the smoke sensors listed in Table 2. *** 13 sensors paired with 17 monitors as some sites ran
multiple monitors simultaneously or switched monitor types during the collocation.

2.2.2. Collocated Monitoring in Smoke-Impacted Conditions

The smoke-impacted datasets were collocations of the PurpleAir sensors at ambient
monitoring sites that were impacted by wildfire smoke and at temporary smoke-monitoring
installations near prescribed fires or wildfires (Table 2 and Table S1 in the Supplementary
Materials). A short-term collocation in Pinehurst, CA with a Met One BAM 1020, a federal-
equivalent method (FEM) device, recorded elevated concentrations due to prescribed fire
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and aged wildfire smoke during October 2018. A long-term collocation with a Grimm
EDM-180 (FEM) at the U.S. EPA’s Ambient Air Innovation Research Site (AIRS) in Research
Triangle Park, North Carolina was impacted by the smoke from multiple prescribed fires.
A long-term collocation with a BAM 1020 (FEM) in Missoula, Montana was impacted by a
prescribed fire and smoke event. Two other smoke-impacted datasets were derived from
temporary deployments located near fires. The temporary deployments were carried out
near the 2018 Natchez wildfire in Happy Camp, CA, collocated with a Met One E-BAM
(non-FEM) and a 2019 prescribed fire/pile burn near Oakley, UT, collocated with a Met
One E-Sampler (non-FEM).

Table 2. Smoke-impact summary of the hourly averaged smoke-impacted dataset locations, monitor
types, fires, date ranges, number of data points (N), concentration, and RH range. All PurpleAir
sensors have >99% of the RH data present. Some sensors were collocated, while others were nearby
sensor monitor pairs identified on the fire and smoke map. Most datasets are 2–3 months long,
including both the smoke-impacted time and some typical ambient conditions.

Nearby or Collocation Location Monitor Type Fire Date Range N

Smoke nearby
identified on fire and
smoke map

Bend, OR M903 Nephelometry Beachie Creek wildfire 01/08/2020–19/10/2020 1758
Boise, ID BAM-1020 Aged OR smoke 01/08/2020–20/10/2020 1753
El Portal, CA E-BAM Creek Fire 20/08/2020–19/10/2020 1279
Forks of Salmon, CA E-BAM Red Salmon Complex wildfire 14/08/2020–20/10/2020 1199
Hoopa, CA E-BAM Red Salmon Complex wildfire 31/07/2020–20/10/2020 1632
Keeler, CA TEOM Creek wildfire 01/08/2020–20/10/2020 1876
Oakridge, OR BAM-1022 Archie Creek wildfire 01/08/2020–19/10/2020 1865
Oroville, CA E-BAM North Complex wildfire 26/08/2020–15/10/2020 1016
Tulelake, CA E-BAM Red Salmon Complex and Slater wildfires 31/07/2020–20/10/2020 1720

Atascadero, CA BAM-1020 River—Dolan wildfire and ambient 01/08/2020–19/10/2020 1850

Smoke collocated by
EPA or partner

Happy Camp, CA E-BAM Natchez wildfire 11/08/2018–29/08/2018 348
Missoula, MT * BAM-1020 Prescribed 18/07/2019–12/09/2019 1152
Oakley, UT E-Sampler Prescribed 01/11/2019–04/11/2019 48
Pinehurst, CA BAM1020 Prescribed fire and aged wildfire smoke 20/10/2018–27/10/2018 157
RTP, NC * Grimm Prescribed 13/03/2019–31/03/2019 429

All Smoke 15 sensors 11/08/2018–20/10/2020 18,082

* This is a different sensor from the sensor deployed during ambient testing.

2.2.3. Nearby Sensor Monitor Pairs Identified on the AirNow Fire and Smoke Map

In addition to the true collocations performed as part of the U.S. EPA’s research projects,
we identified sites with sensors located close to temporary or permanent monitors on the
AirNow Fire and Smoke Map that were impacted by smoke from wildfires during the period
of August to October 2020. Sites were selected that experienced smoke concentrations
above 250 µg/m3, as measured by the monitor, as well as in other geographic locations with
lower concentrations and less data collected (e.g., Boise, ID) (Table 2). All sites were within
roughly 3 km of the nearest monitor (although many were closer) to minimize the impact
of spatial and temporal variations in smoke concentrations on the comparison between the
sensor and the monitor (Table S2 in the Supplementary Materials).

2.2.4. Air Monitoring Equipment and Data Access

PM2.5 Monitors: Permanent Federal Equivalent Method (FEM) and Temporary
Smoke Monitors

Permanent monitors were installed at stationary monitoring sites as part of federal or
state regulatory networks, using a variety of measurement technologies and instrumen-
tation. Most permanent monitors have an FEM designation [38,39] that is suitable for the
regulatory monitoring of PM2.5 via 24-h averages. FEM monitors used in collocations for
this study included light-scattering-based PM2.5 detection methods, including the T640 or
T640x (Teledyne API, San Diego, CA, USA) and the EDM-180 (GRIMM Aerosol Technik,
Ainring, Germany), beta-attenuation-based PM2.5 measurements (MetOne BAM 1020 or
BAM 1022, Met One Instruments, Grants Pass, OR, USA), and tapered-element oscillating
microbalance-based PM2.5 measurements (TEOM 1405, Thermo Fisher Scientific, Waltham,
MA, USA). Nephelometer-based (Radiance Research, Seattle, WA, USA) permanent moni-
tors without a FEM designation were also used in this study since they report to AirNow
and typically offer adequate performance [40–42].
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Temporary deployments of non-FEM, portable PM2.5 instruments are employed in
areas prone to wildfires and where permanent monitors are sparse. The MetOne E-BAM
and E-Sampler are the most common monitors used in these temporary deployments.
Although these instruments do not have a FEM designation, they do have quality control
procedures (e.g., zero checks, leak checks, and flow audits) and have been evaluated with
smoke, both in the laboratory [26,43,44] and in the field [45], and provide accurate PM2.5
smoke concentrations up to 1500 µg/m3.

Data from the permanent and temporary monitors were obtained using multiple
different methods. Temporary monitor data were obtained through a direct data down-
load from the instrument, via the Interagency Wildland Fire Air Quality Response Pro-
gram (IWFAQRP) Monitoring 4.1 website (https://tools.airfire.org/monitoring/v4, ac-
cessed on 19 August 2021), and through the Airsis web-based instrument download
(https://app.airsis.com/USFS/, accessed on 3 January 2022). The IWFAQRP data are
quality controlled to remove data where the internal relative humidity is greater than 40%,
the instrument flow rate is outside the range of 15.7–16.7 lpm, with negative PM2.5 concen-
trations set to zero. Any additional clear outliers were removed from the reference datasets
(Figure S1 in the Supplementary Materials). The direct instrument downloads do not have
any quality-control procedures applied. Permanent data were downloaded from the U.S.
EPA’s Air Quality System (AQS) and have been quality-controlled by local agencies.

Quality Assurance of Permanent Monitors

The accuracy of the permanent monitors was evaluated using the PM2.5 continuous
monitor comparability assessment tool, which allows the automatic plotting of the FEM
data against the collocated federal reference method (FRM) filter data (https://www.epa.
gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments, ac-
cessed on 7 July 2022). Sixteen out of twenty-two monitors had comparability assess-
ments; of these, eight of the sixteen monitors had slopes outside the target range (1 ± 0.1)
(Tables S3 and S4 in the Supplementary Materials). Many of these devices were Teledyne
T640s and T640xs. T640s and T640x are optically based FEMs that may have less noise at
low concentrations but may have nonlinear bias compared to other PM2.5 measurement
methods [46] (Figure S2 in the Supplementary Materials). Because of the nonlinear perfor-
mance at high concentrations, T640 and T640x data above 35 µg/m3 was excluded and
no T640 or T640x monitors were used as reference measurements during smoke events
(see additional details in Section S3 of the Supplementary and Tables S5 and S6 of the
Supplementary Materials). Data were used from T640 and T640x collocations at typical
ambient sites up to 35 µg/m3 to build and evaluate the correction; these provide valuable
data with low noise at low concentrations across more parts of the country than would
have been represented if no T640 or T640x data were included.

2.3. Correction Development

Most corrections for PurpleAir sensors do not account for the nonlinearity seen under
extreme concentrations (Figure 1). We considered several corrections, including terms
to account for RH (Table 3) since previous studies have suggested that humidity levels
can impact the relationship between PurpleAir (or Plantower) and the monitor PM2.5
values [32,47–49]. Many of the equations considered in this paper include interaction
terms (i.e., PM × RH) because RH and PM2.5 are slightly (but often significantly) cor-
related. We also considered a nonlinear impact of RH that was similar to that used in
previous work [28].

2.3.1. Withholding

To ensure that the selected correction models were not overfitted, we built and tested
each model by withholding a portion of the dataset for evaluation only. We first built
each model in Table 3 using all but one sensor and then tested it on the excluded sensor
(“leave one sensor out”). This resulted in 27 iterations of each model type, with datasets

https://tools.airfire.org/monitoring/v4
https://app.airsis.com/USFS/
https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments
https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments
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from each sensor. Each sensor had a variable range of PM2.5 concentrations, but only five
sensors reported data with concentrations above 500 µg/m3. The sensors also experienced
a range of RH (0–100%), with some having typically low RH (e.g., the Phoenix mean has an
RH = 18%), some having typically high RH (e.g., the Marysville mean has an RH = 74%),
and some a broad range (e.g., the Topeka mean = 50%, range = 10–80%). The datasets also
covered a wide range of times, with some sites representing longer time periods than others
(Figure 2). We also withheld according to the week of the year, building on all but one week
of the year (“leave one week out”), and then testing on that week. Many weeks had data
from 3 years (i.e., 2018, 2019, or 2020) (see Figure S3 in the Supplementary Materials). Most
weeks had a wide range of RH conditions, while multiple weeks had high concentrations
from smoke impacts.
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Table 3. Correction equations that were considered.

Model Fit Equation

A U.S. correction PM2.5 = 0.524 × PAcf_1 − 0.0862 × RH + 5.75
B Quadratic PM2.5 = a × PAcf_1

2 + b × PAcf_1 + c
C Cubic PM2.5 = a × PAcf_1

3 + b × PAcf_1
2 + c × PAcf_1 +d

D Quadratic + RH PM2.5 = a × PAcf_1
2 + b × PAcf_1 + c + d × RH

E Quadratic PM * RH PM2.5 = a × PAcf_1
2 + b × PAcf_1 +c + d × RH + e × PAcf_1 × RH

F RH growth, Nilson [28] PAcf_1/monitor = a + b
( 100

RH −1)
(RH limited 30–70%)

2.3.2. Correction Selection

We then evaluated the models by normalized mean bias error (NMBE) and simplicity.
Simplicity was defined as the number of terms in the equation, with a linear model more
simple than a quadradic model, a quadradic model more simple than a cubic model, and
an RH term, increasing the complexity of each model type. If two models performed
adequately, the simpler of the two models would be selected. We wanted to select a model
that would keep the normalized mean bias error within 10% at each AQI breakpoint and
at the threshold of 500 µg/m3, using a piecewise model, if needed, and employing the
simplest model that would meet this requirement. We evaluated the performance at each
AQI breakpoint (Table S7 in the Supplementary Materials) according to public health
guidance changes at each level (e.g., limiting outdoor activity); therefore, this is where
sensor accuracy is most important. We also evaluated the performance at 500 µg/m3,
which is the Cal/OSHA level at which a respirator should be worn. We evaluated the
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NMBE at each breakpoint, using bins of data within ±20% around each breakpoint, to
ensure an adequate number of hourly measurements in each bin. We also included bins
for concentrations below and above the breakpoints to ensure results outside our targeted
range were not unreasonable.
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2.4. Correction Evaluation

After a correction was selected, the corrected dataset (generated using withholding)
was evaluated at hourly, 24-h, and NowCast averages using the recommendations from the
EPA air sensor performance target report for PM2.5 [50]. The report recommends procedures
for evaluating sensors in field and lab environments and specifies metrics including the
ordinary least squared regression slope, intercept, R2, root mean squared error (RMSE),
and normalized root mean squared error (NRMSE), along with target thresholds. To meet
the targets, the sensor must meet either the RMSE target or the NRMSE target; the NRMSE
is typically used for high concentrations (e.g., smoke events), where larger absolute (RMSE)
errors are common. Although the report recommends that sensors be evaluated at 24-h
averages, the same criteria can also be used on 1-h averages.

We also evaluated how often the corrected PurpleAir data reported the same NowCast
AQI category as the monitor. The NowCast is a 12-h weighted average that is weighted
based on the variability of concentrations (see details on the NowCast in the Supplementary
Materials, Section S4). To convert the concentration into AQI, the U.S. EPA’s AQS reference
table was used [51] (see Table S7 in the Supplementary Materials). Evaluating performance
in both hourly and NowCast averages provides a better understanding of the accuracy of
the data displayed on the fire and smoke map, which currently displays NowCast, hourly
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averages, and 10-min-averaged sensor data. The evaluation of 24-h averages allows us
to better compare the corrected PurpleAir measurements to the performance targets and
removes some of the uncertainty in the 1-h monitor measurements.

3. Results and Discussion
3.1. Selecting an Equation
3.1.1. Collinearity of Terms

Many of the equations considered in this paper include the interaction terms
(i.e., PM × RH) because RH and PM2.5 are slightly (but often significantly) correlated
(PurpleAir [cf = 1] PM2.5 with PurpleAir RH R2 = 0.002, with collinearity of p < 2.2 × 10−16,
Monitor PM2.5 with PurpleAir RH R2 = 0.003, p < 2.2 × 10−16). However, this requires a
wider range of combinations of RH and PM2.5 (e.g., a high RH and high PM2.5, a high RH
and low PM2.5, a low RH and low PM2.5, and a low RH and high PM2.5).

3.1.2. Best Equation, Based on NMBE and Simplicity

The optimal equations were selected based on the NMBE at each breakpoint
(Tables S8 and S9 in the Supplementary Materials). No single proposed equation kept
the NMBE at ≤10% across all breakpoints. The U.S.-wide correction equation was the
best-fitting model for PM2.5 concentrations < 10 µg/m3; the NMBE is ≤10%, up to (and
including) the breakpoint to the classification of “Hazardous” (250.4 µg/m3). At the
Cal/OSHA limit, the U.S.-wide correction leads to an NMBE > 10%, and the quadradic fit
is the simplest fit that keeps the NMBE at ≤10%. The results are similar whether using
week or site withholding. Using a piecewise equation that includes both the U.S.-wide
correction and the quadradic fit at higher concentrations meets the criteria of NMBE ≤ 10%
at each breakpoint of interest (see Table 4).

Table 4. The 1-h error at each AQI breakpoint, using site withholding and a transition from the
U.S.-wide correction to a quadradic fit from 300 to 400 µg/m3 (raw [cf = 1] 570–611 µg/m3).

AQI Breakpoint Concentration Range (µg/m3) N Selected Fit NMBE RMSE (µg/m3) NRMSE

Below 0–10 90,960 U.S.-wide −5% 3 54%
Moderate 10–14 15,205 U.S.-wide −10% 4 31%
UHSG 28–42 2196 U.S.-wide 4% 9 27%
Unhealthy 44–66 1291 U.S.-wide 9% 12 22%
Very Unhealthy 120–180 503 U.S.-wide 2% 18 12%
Hazardous 200–300 475 U.S.-wide −5% 31 12%
Cal/OSHA 400–600 230 Quadradic 0% 89 18%
Beyond 600+ 189 Quadradic −7% 216 25%

3.1.3. Final Equations

The U.S.-wide equation reduced the NMBE to ≤10%, up to the breakpoint to “Haz-
ardous”, and the quadradic fit is the best and simplest fit around the Cal/OSHA respirator
limit, based on the NMBE (best fit) and the number of terms (simplicity). Since the tran-
sition falls in the “Hazardous” category, we transitioned from roughly 300–400 µg/m3,
corrected so that the transition zone does not impact data near either the “Hazardous” break-
point or the Cal/OSHA respirator limit, keeping the error low throughout the transition
(Table S10 in the Supplementary Materials). We transitioned linearly from using 100% of
Equation (1) (model A, the original U.S.-wide correction) to 100% of Equation (3) (model B,
with a quadradic fit), as shown in Equation (2) (Figure S4 in the Supplementary Materials).
The transition zone was selected by calculating the raw PurpleAir [cf = 1] (PAcf1) value
that would result from a corrected PM2.5 concentration of 300 µg/m3, using the U.S.-wide
correction at 50% RH and 400 µg/m3, employing the quadradic fit:

PAcf1 < 570 (corrected = 300 µg/m3 at 50% RH)
PM2.5 = PAcf1 × 0.524 − 0.0862 × RH + 5.75

(1)
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570 ≤ PAcf1 < 611
PM2.5 = (0.0244 × PAcf1 − 13.9) × [Equation (3)] + (1 − (0.0244 × PAcf1 − 13.9)) × [Equation (1)]

(2)

PAcf1 ≥ 611 (corrected 400 µg/m3)
PM2.5 = PAcf1

2 × 4.21 × 10−4 + PAcf1 × 0.392 +3.44
(3)

In the equations, RH represents the relative humidity, as measured by the PurpleAir.
The transition is needed to reduce the gap between equations. Simplicity is prioritized

to reduce the computation time, which precludes the use of a sigmoid transition (i.e., a
mathematical function with an S-shaped curve). We considered merging the datasets at the
intersection between the two curves at 50% RH. However, since only the linear correction
includes RH, this would lead to a discontinuity of up to 4 µg/m3 at high and low RH. For
example, if the concentration rose by 1 µg/m3 at the transition point between equations,
the estimated PM2.5 could fall by 4 µg/m3 if the RH was 0%. Therefore, the transition is
effective in tapering the influence of the RH term. The transition is not essential; therefore,
for applications that prioritize simplicity, Equation 1 can be used for concentrations up to
300 µg/m3, while Equation (3) can be used for concentrations of 300 µg/m3 and above.

3.1.4. Discussion Influence of RH

As reported in our previous work [17], here, we do not see exponential increases
in PM2.5 estimates at high humidity (>60–80% RH). Although the hygroscopic growth
of particles can lead to exponential light scattering [52], it does not appear to impact the
PurpleAir data used in this study, which is potentially due to the sensors keeping the
particles slightly warmer or dryer, or is due to some particles growing to a size that is not
easily detected by the PurpleAir [53]. The additive RH term is still effective at correcting
and improving the sensor accuracy from 0 to 300 µg/m3.

It is unclear what the influence of RH may be on PurpleAir performance at high
concentrations. Over ~750 ug/m3, the higher RH appears to lead to lower PM2.5 estimates
from the PurpleAir sensors (Figure 1). However, this data is from only three sensors (Forks
of Salmon, Hoopa, and Oroville, Figures S5 and S6 in the Supplementary Materials). The
RH range experienced at each of these sites during these high concentration times is quite
limited (range < 24%), making it unclear whether this apparent RH influence is due to the
difference in monitor sensor agreement at the 3 sites or is due to higher RH values, leading
to sensor saturation at lower concentrations. Additional data would be needed to better
understand the influence of RH at high PM2.5 concentrations; however, monitors may also
demonstrate large uncertainties at these extreme conditions, which may lead to further
challenges in quantifying this relationship.

3.2. Evaluation of the Correction—EPA Performance Target Evaluation at 1-h and 24-h Averages

Both the withholding methods resulted in similar sensor performance. The ambient
sensors performed well, meeting or very nearly meeting the targets at both 1-h and 24-h
averages (see details in SI Section S6), with slopes within 1 ± 0.31, intercepts within
±2 µg/m3, RMSE ≤ 6 µg/m3, and R2 ≥ 0.66 (target R2 ≥ 0.70). Smoke-impacted sen-
sors typically met or were near to the 24-h averaged targets with slopes within 1 ± 0.38
(target 1 ± 0.35), intercepts within ± 13 µg/m3 (target ±5 µg/m3), NRMSE ≤ 40%
(target ≤ 30%), and R2 ≥ 0.61 (target R2 ≥ 0.70). At the 1-h averages, the smoke-impacted
sensors still typically met or nearly met the targets, although in some cases, this was
with larger errors (NRMSE of up to 55%). While not all the sensors evaluated met the
performance targets, it is important to note that the performance targets are not pass/fail
certifications but are instead a recommendation to encourage overall performance improve-
ment of the technology entering the market. Falling short of these targets does not mean
that the data are unusable.

It is also important to note that not all recommendations in the performance targets
were followed in this evaluation. Many of the smoke-impacted sites were selected as nearby



Sensors 2022, 22, 9669 11 of 18

monitor sensor pairs on the fire and smoke map and, therefore, may not be true collocations.
Some of the scatter (RMSE) in the comparisons may be due to real concentration differences.
In addition, the performance targets report recommends evaluating the sensors in triplicate.
Here, we have evaluated a single sensor at each site. However, past work with PurpleAir
sensors has already established their high precision (especially when using the duplicate
Plantower sensors for quality control) and so this may be less of an issue for this sensor
type [17,20,31,54]. Lastly, not all sensors were evaluated against FEMs, as recommended in
the performance targets document [50]. However, this recommendation is less relevant for
smoke monitoring, wherein FEMs also show uncertainty since their designation involves
field-testing at typical ambient, not smoke-impacted, conditions.

3.3. Negative Values at Hourly Averages

Monitoring sites typically retain negatives that are near zero to represent the baseline
noise of the instrument. After correction using withholding, 1.5% of the PurpleAir data
were negative, compared to 1.9% of the monitor data. The lower percentage of negatives
from the PurpleAir sensors versus the monitors suggests that the PurpleAir sensors are
not reporting an unreasonable number of negative values. On the AirNow fire and smoke
map, all the negative values that are displayed are rounded to zero; however, in this work,
negative values have been retained for the purposes of analysis.

3.4. NowCast Averaged Performance

Overall, the corrected data predicted the NowCast AQI category correctly for 94% of
the time (Figure 3 and Table S15 in the Supplementary Materials). When the PurpleAir
and monitor reported different AQI categories, often (77% of the time), the concentrations
reported were within 5 µg/m3 (e.g., the PurpleAir concentration is 10 µg/m3 and the
monitor concentration is 13 µg/m3, leading to different AQI categories but with only a
concentration difference of 3 µg/m3). In all categories, <1% of the points are of more than
one category different.

The “Hazardous” category has the highest percentage of points that underestimate
the AQI category (12%). There is a slight underestimation at the breakpoint between
“Very unhealthy” and “Hazardous” (NMBE = −5%); however. much of this underesti-
mation is due to the large variability in agreement between the PurpleAir and the mon-
itors at these high concentrations (see the scatter plot in Figure 1). This is also reflected
in the increasing RMSE at the breakpoint between “Very unhealthy” and “Hazardous”
(RMSE = 31 µg/m3). It is also important to note the more limited number of values in the
hazardous AQI category (N = 969, 0.6% of the full dataset), meaning that these results may
be less representative of a larger sample size. Additional hazardous AQI category data
could enable better-tuned correction in the future.

3.5. Comparisons to Other Published Corrections

At concentrations of up to 300 µg/m3, the extended U.S.-wide correction is consis-
tent with other corrections that are currently in use on the PurpleAir map (ALT cf = 3,
Woodsmoke, AQandU, LRAPA, map.purpleair.com, accessed on 26 July 2022) (Figure 4).
However, all other corrections that are in use on the PurpleAir map significantly under-
estimate the values at high concentrations (>300 µg/m3) (the Nilson equation is not an
option on the PurpleAir map and is discussed in the next paragraph). The ALT [cf = 3]
correction [55] may improve performance near the limit of detection, but it does not lead to
improved performance in other concentration ranges. Moreover, the ALT [cf = 3] correction
is impractical, requiring more data fields and additional calculations, which increases the
computational requirements for large-scale mapping, as used in the AirNow fire and smoke
map or other such applications. However, better quantification near the limit of detection
may be more important for sensors that are used in very clean environments (e.g., indoors)
and when seeking to calculate more accurate long-term trends.

map.purpleair.com


Sensors 2022, 22, 9669 12 of 18
Sensors 2022, 22, 9669 13 of 19 
 

 

 

Figure 3. Percentage of the time that the PurpleAir NowCast AQI is the same as or different by 1 or 

2 NowCast AQI categories. This is binned by the reference NowCast AQI category. It includes data 

using both withholding methods. 

3.5. Comparisons to Other Published Corrections 

At concentrations of up to 300 µg/m3, the extended U.S.-wide correction is consistent 

with other corrections that are currently in use on the PurpleAir map (ALT cf = 3, 

Woodsmoke, AQandU, LRAPA, map.purpleair.com, last accessed 26 July 2022) (Figure 

4). However, all other corrections that are in use on the PurpleAir map significantly 

underestimate the values at high concentrations (>300 µg/m3) (the Nilson equation is not 

an option on the PurpleAir map and is discussed in the next paragraph). The ALT [cf = 3] 

correction [55] may improve performance near the limit of detection, but it does not lead 

to improved performance in other concentration ranges. Moreover, the ALT [cf = 3] 

correction is impractical, requiring more data fields and additional calculations, which 

increases the computational requirements for large-scale mapping, as used in the AirNow 

fire and smoke map or other such applications. However, better quantification near the 

limit of detection may be more important for sensors that are used in very clean 

environments (e.g., indoors) and when seeking to calculate more accurate long-term 

trends. 

For this paper, we have also considered the Nilson equation [28]. This equation is in 

use on a PM2.5 map of Canada, showing the FEM monitors, along with the PurpleAir and 

AQ Egg sensors (https://cyclone.unbc.ca/aqmap/, last accessed: 26 July 22). Although the 

correction appears to perform well at low (~<25 µg/m3) and extremely high 

concentrations, (~>500 µg/m3) it overestimates the values at many concentrations in 

between (Figure 4). When the Nilson equation is compared to the U.S.-wide correction (in 
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For this paper, we have also considered the Nilson equation [28]. This equation is in
use on a PM2.5 map of Canada, showing the FEM monitors, along with the PurpleAir and
AQ Egg sensors (https://cyclone.unbc.ca/aqmap/, accessed on 26 July 2022). Although
the correction appears to perform well at low (~<25 µg/m3) and extremely high concen-
trations, (~>500 µg/m3) it overestimates the values at many concentrations in between
(Figure 4). When the Nilson equation is compared to the U.S.-wide correction (in use up to
300 µg/m3), the equations diverge above ~15 µg/m3, with the Nilson equation estimating
higher concentrations of PM2.5 (Figure 5).

We fitted and tested a model of a similar form (Model F, Table 3) on the dataset in this
study, which resulted in significant overestimates between the breakpoint to unhealthy
values for sensitive groups (UHSG) to the breakpoint to “Hazardous” AQI (28–300 µg/m3,
NMBE = 42% to 63%, Table S9). The equation developed on the dataset in this paper has
slightly higher coefficients than the equation developed by Nilson, but the coefficients are
within 10% (Figure S7 in the Supplementary Materials). The slightly higher coefficients
suggest a higher PurpleAir/monitor ratio in our dataset, which may be due to a larger
fraction of T640 and T640x data, used in the Nilson paper, leading to higher monitor
concentrations in the denominator. In addition, the RH term is slightly stronger, suggesting
slightly more hygroscopic growth in our dataset. The Nilson correction does not agree well
with the correction that we have developed in this paper.

https://cyclone.unbc.ca/aqmap/
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4. Conclusions

Air sensors can provide additional data critical during smoke impacts. While the
U.S.-wide correction developed previously improves the accuracy of hourly data up to
300 µg/m3, transitioning to a quadradic fit at higher concentrations keeps the NMBE to
≤10% at each AQI breakpoint and at 500 µg/m3 (the Cal/OSHA respirator limit). The
correction developed in this paper can be used to improve the performance of PurpleAir
sensors in situations from typical ambient concentrations to extreme smoke. The equation
developed in this paper is not comparable to other commonly used PurpleAir corrections
that are focused on a narrower range of concentrations.

This work is an evaluation of a single air-sensor type and there are many additional
sensors commercially available. The framework from this study may be used for additional
air sensor types. It could be used to both develope corrections and better understand
sensor performance over the full range of anticipated concentrations, where decisions must
be made (e.g., 0–500 µg/m3). Understanding sensor performance over a wide range of
concentrations is critical for an application where sensors will provide information during
both smoke-impacted and typical ambient conditions. The findings from this paper may
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also be relevant for other pollutant types, wherein understanding the performance over the
full range of decision-relevant concentrations is important as well.
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4.1. Limitations

Because some of the PurpleAir sensors in this work were identified from the AirNow
fire and smoke map, we do not have any certainty of the accuracy of their location. This
may lead to additional errors since they might not be truly collocated. Some sensor owners
may specifically identify their sensor location inaccurately, to address privacy concerns.
Sensors that were actually collocated (within <10 m) may have seen better agreement.
While 3 km is farther than we would typically consider for collocation (typically <0.1 km),
the 3 sites with longer distances still had strong correlations (hourly R2 = 0.94–0.96), which
was in line with those of the true collocations (hourly, R2 = 0.54–0.97).

PurpleAir and the internal sensors are known to underestimate the values during dust
events [17,35,56–58], which may have contributed to some of the errors at dust-impacted
sites in this study. Dust may be harder to sample with these sensors because of the large
particle losses in the inlet due to the low flow fans, particle loss due to internal turns in the
sensor, lower light scattering to the mass ratio for larger particles, and the assumed size
distribution used to convert light scattering from the sensor into mass that cannot adjust if
larger particles are present [53,59–61]. Future air-sensor hardware or correction methods
that could account for dust and the changing size distributions could lead to improved
accuracy and would be a valuable addition.

This work did not specifically consider sensor drift and aging. There is some un-
certainty in the long-term performance of these sensors, although the comparison of the
duplicate Plantower sensors gives us more confidence in the measurements over time.
Previous work done on PurpleAir sensors in California has suggested they can provide
useful data for three years or more without substantial drift [62]. As the PurpleAir network
ages, additional work should be done to understand any impacts on accuracy over the full
range of concentrations.
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Relative humidity data were missing from a small portion of the dataset (1%). We
did not account for the accuracy of the RH measurement in this work, although past work
has shown that the PurpleAir internal RH measurement is strongly correlated with true
temperature and RH and has high precision [23,31,32]. If an RH sensor fails, a default value
of 50% or a local average RH can be used as a substitute.
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